
Some Comments on Solids of Revolution
Calculus 12, Veritas Prep.

So far, you’ve learned one formula to find the volume of a solid of revolution:

the volume of the shape generated by f(x)
from a to b revolved around the x-axis

=
∫ b

a
π( f(x) )2 dx

Explained differently, this formula revolves a shape around whatever axis the function defining that shape
is written in terms of. For example, if we plug y = x2 into this formula, it revolves x2 around the x-axis;
if we plug x = 3

√
y into this formula (and find

∫
π( 3
√
y)2 dy), it’ll revolve 3

√
y around the y-axis.

We can derive another formula that does something similar, but with a subtle and important difference:

the volume of the shape generated by f(x)
from a to b revolved around the y-axis

=
∫ b

a
2πxf(x) dx

This formula is different. This formula takes a function written in terms of one variable, and revolves it
around the opposite axis. It takes functions written in terms of x and revolves them around the y-axis; it
takes functions in terms of y and revolves them around the x-axis.

If you’re wondering why we care about having two different formulas that do more-or-less the same
thing—aren’t they redundant? couldn’t we just solve a function for either variable and then use either
formula to find the volume of the same shape?—skip ahead to the second example.

As another comment: neither of these formulas actually describe the three-dimensional shapes. They
merely find their volumes. If you wanted to describe the shapes in three dimensions, you’d need a third
variable (and some understanding of multivariate calculus). For example—and this is just an example,
and not something to generalize from—if you want the equation for a parabola rotated around the y-axis
(a three-dimensional paraboloid, it’s y = x2 + z2, with z being the axis of our third dimension

Example: The Volume Of The Same Shape Found Using Two Different Formulas
Maybe I want to revolve the bullet-like shape given by the function y =

√
x from 0 to 9 around the x-axis

(and find the volume of said bullet). The 2D (unrevolved) shape looks like this:



I can find the volume of the 3D shape in two ways. Using the first formula, I can just things in, and get:

V =
∫ 9

0
π(
√
x)2dx

=
∫ 9

0
πx dx

=
[π

2
x2
]9
0

=
(π

2
92
)
−
(π

2
02
)

=
81π
2
− 0

=
81π
2

Or we could use the second formula. First, we have to write this in terms of y, because that way, when I
plug it into my other formula, the formula will revolve it around the x-axis (which is what we want):

y =
√
x

y2 = (
√
x)2

x = y2

Then I have to find the new starting and ending points of my shape. It starts at x = 0, and it ends at
x = 9. If I plug those into my original function, I find that those two points are

√
x = y

√
0 = 0
√

9 = 3

So (with respect to y) the shape goes from y = 0 to y = 3. So if I plug things into my second formula, I
have:

V =
∫ 3

0
2π · y · y2dy

=
∫ 3

0
2πy3dy

=
[

2π
4
y4

]3

0

=
(

2π
4

34

)
−
(

2π
4

04

)
=

81π
2
− 0

=
81π
2

Same answer!



Another Important Example
What if we want to take the region bounded by y =

√
ln(x) and y = 0 (on the top and bottom) and x = 1

and x = e4 (on the left and right, revolve it around the x-axis, and find the volume? The region, by the
way, looks like this:

So the 3D shape will look like a much-less-aerodynamic bullet. If we use our first formula, we get

V =
∫ e4

1
π(
√

ln(x) )2dx =
∫ e4

1
π ln(x)dx

How do you work this out? Who knows? Not you. You have no idea how to do this integral1. GOOD
THING WE HAVE ANOTHER FORMULA! What if we try using it? First we’d need to put everything
in terms of y. So we’ll have:

y =
√

ln(x) =⇒ y2 = ln(x) =⇒ e(y
2) = x =⇒ x = e(y

2)

x = 1 =⇒ y =
√

ln(1) =⇒ y =
√

0 =⇒ y = 0

x = e4 =⇒ y =
√

ln(e4) =⇒ y =
√

4 =⇒ y = 2

Then if we plug this stuff into our other formula, it’ll revolve this shape around the x-axis (which is what
we want). So we’ll have:

V =
∫ 2

1
2π · y · ey2

dy

=
[
πey

2
]2
1

= (πe2
2
)− (πe1

2
)

= πe4 − πe
= πe(e3 − 1)
≈ 179.88

Yay!

1I know how to do it! Eventually, you will, too. But not yet.



One Last Thing
Note that we can generalize both of our formulas. What if we want to take a shape generated by rotating
the area between two functions around the x-axis, and find the volume of that shape? (Like, we could have
a ring or something. A “hollow” of revolution, rather than a solid of revolution.) Not surprisingly, we
simply subtract two integrals (the volume of the outer shape minus the volume of the inner shape):

the volume of the shape generated by rotating
the area between f(x) and g(x) between x = a

and x = b around the x-axis
=
∫ b

a
π( f(x) )2 dx−

∫ b

a
π( g(x) )2 dx

Note here that, as usual, the order of the functions is important—f(x) should be the outer radius of this
shape, and g(x) the inner radius. Otherwise you’d get a negative you didn’t want. And if g(x) = 0 (i.e., is
the x-axis), then we just have the same formula we had before. We can make the same generalization for
our other method:

the volume of the shape generated by rotating
the region between f(x) and g(x) between

x = a and x = b around the y-axis
=
∫ b

a
2πx f(x) dx−

∫ b

a
2πxg(x) dx


