
Derivatives as Rates of Change
Calculus 11, Veritas Prep.

Imagine the following scenario: a tortoise and a hare decide to go on an Aesopian footrace, the prize
of which will be eternal glory. Except rather than race down a straight path, or even race down the same
path, a Darwinian glitch in the hare’s navigational systems has caused it to hop off at an orthogonal angle1

to the tortoise:

This is bad for any number of reasons, among them the fact the winner of the race will not be known
until each animal has circumambulated the surface of the earth—the primitive technology available to the
tortoises and hares doesn’t allow them to directly measure velocity or distance. Hence the need for direct
comparison. Which, I guess, is what one always does in a race—everyone starts and finishes at the same
points.

Uh, anyway, as a third complication, a practical jokester (perhaps an otter?) has attached a spool of
string to the back of the tortoise, and tied the end of the strong to one of the hare’s ears. So as soon as
they start their race, the string starts unspooling, unbeknownst to either of them.

A couple of questions: first of all, when will they run out of string? that is to say, when will the tortoise
and the hare feel a sudden jerk back towards each other, and realize that they’re tied together? And,
secondly: the amount of internal injuries they suffer will be directly proportional to the force exerted by
the string at the moment that it stops them from running independently, which in turn will be proportional
to the rate at which the distance between them is changing—i.e., the speed at which the string is coming
of the spool. So at the instant they run out of string, how fast is the distance between the tortoise and the
hare changing?

(If they were both running in the same direction, we’d just subtract their speeds; if they were both
running in opposite directions, we’d add their speeds. You did this in physics last year—you discussed
relative motion.) (Note how I’ve used the word “speed” rather than “velocity,” since velocity includes
information about direction.))

Let’s assume that the tortoise can run (“run”) 5m/h (where “m” means “meter” and not “mile”) and
the hare can run 200m/h, and that at the beginning of the race, there’s 1000m of string on the tortoise’s
back. (Assume, for simplicity’s sake, that the weight of the string doesn’t slow the tortoise down.) And
let’s let:

• T (t) be the position of the tortoise as a function of time

– then T ′(t) (or dT/dt) is the velocity of the tortoise (as a fxn of time) (which, incidentally, we
know is 5m/h.)

• H(t) be the position of the hare as a function of time
1the adult version of “right angle”.
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– then H ′(t) (or dH/dt) is the velocity of the hare (as a fxn of time) (which, incidentally, we know
is 200m/h.)

Furthermore, let’s assume there’s 1km (i.e., 1000m) of string on the tortoise’s back. Let’s call S(t)
be the amount of string that has been unspooled (as a function of time)—which, note, is just the distance
between the tortoise and the hare. And then S′(t) (or dS/dt) will be the rate at which the string is
unspooling (i.e., the rate at which the distance between the tortoise and the hare is increasing).

So our situation looks something like this:

(So S(t) is really just the hypotenuse of this right triangle—which means that the Pythagorean theorem
might come into play...)

We want to find a couple things: first, when do they run out of string? Meaning, when is the
distance between the tortoise and the hare 1000m? Meaning, when is S(t) = 1000? (And here “when”
means “for what value of t is S(t) = 1000?”)

Because of the Pythagorean theorem, we must have:

(T (t))2 + (H(t))2 = (S(t))2

For ease of writing, you might wish to drop the “(t)”’s:

T 2 +H2 = S2

We want to find when S = 1000, so we can plug that in:

T 2 +H2 = 10002

But how do I solve for t? We’ll need more information. Luckily, we have more information. We know
the velocities of both the tortoise and the hare, and we know that both of these velocities are constant
(neither the tortoise nor the hare speed up or slow down). so then after t hours, the tortoise has travelled
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T (t) = 5 · t meters, and after t hours, the hare has travelled H(t) = 200 · t meters2 So we know:

T (t) = 5t
H(t) = 200t

If we plug these into our Pythagorean thing, we get:

(5t)2 + (200t))2 = 10002

25t2 + 2002t2 = 10002

I haven’t bothered squaring 1000 and 25, because that’s too much writing—and I can always let the
calculator take care of it. Now, if I solve for t:

t2(25 + 2002) = 10002

t2 = 10002/(25 + 2002)

t =
√

10002/(25 + 2002)
t ≈ 4.99

So the hare and the tortoise will be running for about five hours before they run out of string. It’ll take
about four hours before they notice that they’re tied to each other.

Second question: what is the rate at which the distance between the animals is changing at
the instant they run out of string? (I.e., when S(t) = 1000.) Put differently, what is S′(t) (or dS/dt)
when S = 1000? This is the crucial idea here: we can think of the derivative as a rate of change.
dy/dx is the amount that y changes for every change in x. By “rate” we usually mean “change per unit
time”, and so something like dS/dt or S′(t) is the rate at which S changes, per some change in t. Velocity
is a rate—e.g., miles per hour. And it’s just a derivative—the derivative of position. So I guess we’ll want
to find S′(t) to find the speed at which the distance is changing (at any time t), and then plug in 4.99 for
t to find the speed at that moment.

We already know:
(T (t))2 + (H(t))2 = (S(t))2

So I guess if we want to find S′(t), we’ll need to take a derivative! We could do it in two ways: either solve
for S(t) and then differentiate, or differentiate and then solve for S′(t).

If I differentiate and then solve, I get:

(T (t))2 + (H(t))2 = (S(t))2

d

dt

[
(T (t))2 + (H(t))2

]
=

d

dt

[
(S(t))2

]
2T (t) · T ′(t) + 2H(t) ·H ′(t) = 2S(t) · S′(t)

S′(t) =
2T (t)T ′(t) + 2H(t)H ′(t)

2S(t)

S′(t) =
T (t)T ′(t) +H(t)H ′(t)

S(t)

Alternatively, if I first solve for S(t) and then differentiate:

(T (t))2 + (H(t))2 = (S(t))2

2If their velocities weren’t constant—if they were speeding up or slowing down; if their speedometer weren’t stuck—then it
wouldn’t be so easy. We’d need to use an integral. Distance—and this is just one of the many, many lies that evil Mr. Ward
told you last year—distance is not always equal to rate times time. d = rt is only true if rate is constant.
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so then

S(t) =
√

(T (t))2 + (H(t))2

differentiating...

d

dt
[S(t)] =

d

dt

[√
(T (t))2 + (H(t))2

]

S′(t) =
1

2
√

(T (t))2 + (H(t))2
·
(
2T (t)T ′(t) + 2H(t)H ′(t)

)

=
2T (t)T ′(t) + 2H(t)H ′(t)

2
√

(T (t))2 + (H(t))2

=
T (t)T ′(t) +H(t)H ′(t)√

(T (t))2 + (H(t))2

but since we know that S(t) =
√

(T (t))2 + (H(t))2, we can simplify this to:

S′(t) =
T (t)T ′(t) +H(t)H ′(t)

S(t)

So, either way I get the same thing! We get that

S′(t) =
T (t)T ′(t) +H(t)H ′(t)

S(t)

(I’m sorry if these two derivations were hard to read; I think all the “(t)”s made it needlessly messy, but I
wanted to put them in there just so you wouldn’t forget that S, T , and H are all functions of t... I dunno.
If you find them confusing, try writing them out without the “(t)”s, and see if it’s clearer.)

So this tells us the rate (the speed) at which the distance between the tortoise and the hare is changing
as a function of time. Or rather, as a function of the distance the tortoise and the hare have each travelled,
as well as their speeds and the distance between them. We can simplify it a bit. First of all, we know the
speeds of the tortoise and the hare (we know T ′(t) = 5 and H ′(t) = 200), so we can plug those in:

S′(t) =
T (t) · 5 +H(t) · 200

S(t)

Likewise, we also know that S(t) =
√

(T (t))2 + (H(t))2, so if we plug that in:

S′(t) =
T (t) · 5 +H(t) · 200√

(T (t))2 + (H(t))2

And since we know that H(t) = 200t and T (t) = 5t, we have:

S′(t) =
5t · 5 + 200t · 200√

((5t)2 + (200t)2
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or:

=
25t+ 2002t√
25t2 + 2002t2

=
t(25 + 2002)√
(t2)(25 + 2002)

=
t(25 + 2002)√
t2
√

25 + 2002

=
t(25 + 2002)
t
√

25 + 2002

=
25 + 2002

√
25 + 2002

≈ 200.0625m/s

So that means that the distance between the tortoise and the hare is increasing at a constant rate—at a
speed of a little more than 200 meters per second! So at the instant that the string runs out, the tortoise
and the hare are getting further apart at a rate of about 200 meters per second. (Which is close to the
hare’s speed—that’s because the difference in speeds is so great. If they were going at similar speeds, we’d
get something different... this is close to the scenario in which the hare is speeding along and the tortoise
is standing still.)

velocity: change in position per change in time interest: change in money per change in time flux
power: change in energy per change in time(?) other physics examples

usuaally by “rate” we mean change in X per change in time though, of course, we could measure
change relative to somethijng othter than time. for instance, i could

Another Example
Here’s another good example. You’re in Arizona. You’re trying to get to Tombstone, but your party

was massacred by Indians/bandits/wild animals somewhere north of Nogales. You’re the only survivor.
So you’ve been walking for days, with no sign of anything living. And then you see it: train tracks. They
extend to the horizon like a pencil line in two-point perspective, and just before the vanishing point rises
an object that you remember from your boyhood days studying Euclid: a cone. Are you hallucinating?
Are you so close to death that time is melting? Are you in the desert or in Mr. Dick’s class? Are you
entering the Platonic world of shapes?

The cone, though, isn’t quite a cone: it’s an inverted cone, raised up above the ground and supported
on an iron lattice. It’s a water tower. You straggle forth. The water tower must be miles away but in
what seems like minutes you’re underneath it, lapping up the drip-drip-dripping coming from the leak at
the very vertex of the cone. The water tastes like rust, but it also tastes like water, which is delicious and
revivifying. So you lie down directly underneath the leak and open your mouth. You don’t have a cup or
anything to catch the water with. All you have is your mouth. But that’s OK, because you could lie there
and drink water all day.

Unfortunately, that won’t be possible. There’s only a finite amount of water in the tank. Moreover:
the rate at which the water is dripping out of the tank is decreasing over time. The rate at which the water
drips will be proportional to the amount of water in the tank—the more water there is in the tank, the
greater the water pressure at the vetex will be, and the faster it’ll drip—and so the more water that drips
out, the less water there is, and the less the pressure there is, and the slower it drips.

Let’s imagine you don’t actually care about the amount of water in the tank. Let’s imagine, instead,
that the water is sort of like an IV for you—that you need to drink a certain amount of water per unit time,
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lest you lapse back into unconsciousness. You do not want to return to your dessicated desert delerium.
You need to be drinking at least 10 cubic centimeters of water per minute to remain conscious.

Uh. Crud. I just realized that this problem, the way I’m setting it up, is a bit beyond your level. This
always happens when I write word problems—I get way too involved and write stuff that’s too complicated
and elaborate. Look, let’s just do a dumb problem involving a stupid cone and water dripping.

OK, so imagine you have a cone or a funnel or something and water is dripping out of it. Let’s imagine
that cone is 10 feet in diameter at the opening and 15 feet tall, and that the water is dripping at a constant
rate of one cubic foot per hour. That’s a stupid assumption to make—the water won’t drip at a consant
rate—but all of the textbooks love making that assumption. So, anyway, water drips out, the water leve
in the cone changes, and the surface area of the water in the cone changes, too. Let’s say that the height
of the water at any given time t is hwater(t). Then I have a situation like this:

I’ve labelled the radius of the water level in the cone as rwater(t). So, the typical textbook question to
ask now—not like you’d really care, were you dying of thirst in the Sonoran desert—the typical question
to ask is “at what rate is the water level falling?”

So really we are asking, at what rate is the height of the water changing? Or: what is dhwater/dt a/k/a
h′water(t)? I guess we’ll need to find an equation with h(t) in it that we can differentiate.

What do we know? We know the rate at which water is leaving the cone: if the volume of water is
Vwater, then

dVwater

dt
= V ′water(t) = −1ft3/h

We also know that the volume of a cone with radius r and height h is:

V =
1
3
πr2h

Here, of course, we have two cones: we have the actual container, with a permanent height of 15ft
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and radius of 10ft. And inside of that, we have a cone of water, whose height and radius are changing (as
the water is leaking out).

Vwater =
1
3
πr2waterhwater

Or if I write it to remind myself that these things are all functions of time:

Vwater(t) =
1
3
π(rwater(t))2hwater(t)

Our question is “at what rate is the water level falling?”? So really we are asking, at what rate is the
height of the water changing? Or: what is dhwater/dt a/k/a h′water(t)? We want to find this. We could do
this a couple ways: we could solve this equation for hwater and take a derivative, or we could differentiate
what we have implicitly and then solve for h′water(t).

But let’s simplify it a bit before we do either. We have three functions here—the volume, the height,
and the radius. We can simplify this. We can reduce h(t) and r(t) to just one function. We know that
the radius of the container cone is 10ft and the height of the container cone is 15ft, and we know that
any cone inside of this one will have the same proportions (because of similar triangles or something):

rcone

hcone
=
rwater

hwater

10
15

=
rwater

hwater

rwater =
10
15
hwater

rwater =
2
3
hwater

So really, we know that:

rwater(t) =
2
3
hwater(t)
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We can plug this back into our formula for the volume of water and get:

Vwater(t) =
1
3
π(rwater(t))2hwater(t)

=
1
3
π

(
2
3
hwater(t)

)2

hwater(t)

=
1
3
π · 4

9
(hwater(t))2 · hwater(t)

=
4
27
π(hwater(t))3

This is a bit easier to deal with. So. So I know Vwater(t). I want to find h′(t). I should probabaly take a
derivative! I could either take what I have and solve it for h(t) and then differentiate; alternatively, I could
just differentiate what I have implicitly, and solve for h′(t).

d

dt
(Vwater(t)) =

d

dt

(
4
27
π(hwater(t))3

)
V ′water(t) =

4
27
π · 3(hwater(t))2 · h′water(t)

V ′water(t) =
4
9
π · (hwater(t))2 · h′water(t)

so then if I solve for h′(t)

h′water(t) =
V ′water(t)

4
9π · (hwater(t))2

We’ve found it! But we can simplify this a bit. We already know another way of writing V ′water(t). We
know it’s just equal to −1ft3/hr. So if we plug this in:

h′(t) =
−1

4
9π · (hwater(t))2

simplifying:

h′(t) =
−9

4π(hwater(t))2

There it is! There’s the rate at which the water level is falling! I might be curious about a specific case:
for instance, at the instant that the water is 7 feet deep, how fast is the water level falling? I don’t know
at what time that will be, so I can’t plug something in for t, but i don’t need to—I can just plug in 7 for
hwater(t):

h′(t) =
−9

4π(7)2

=
−9

4π · 49
≈ −0.0146

So at that instant, the water level is dropping at about 0.0146 feet per hour!
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Problems

In the following problems: an object is moving along a line such that its position at any time t is given
by the function x(t). Find the velocity and acceleration of the particle any any time t, and then find the
position, velocity, and acceleration of the particle at the given instant.

1. x(t) = 4 + 3t− t2, when t = 5

2. x(t) = 5t− t3, when t = 3

3. x(t) = 18/(t+ 2), when t = 1

4. x(t) = (2t)/t+ 3), when t = 3

5. x(t) = (t2 + 5t)(t2 + t− 2), when t = 1

6. x(t) = (t2 − 3t)(t2 + 3t), when t = 2

7. Imagine that the radius of a circle is changing
over time. Can you come up with a function
for the area of the circle as a function of time?
Can you come up with a function for the rate
at which the area of the circle changes (possi-
bly in terms of the radius and the rate at which
the radius is changing)?

8. Likewise, imagine that the radius of a sphere
is changing over time. (Like, you’re inflating a
balloon or something.) Can you come up with
an expression for the volume of the sphere as
a function of time? Can you come up with
an expression for the rate at which the volume
changes (again, as a function of the radius and
the rate the radius changes)?

9. Or imagine this. Imagine you have a balloon-
inflating machine that inflates balloons at a
rate of three cubic centimeters per second.
Assume that the balloon is a sphere. You
know two different ways of writing V ′(t) (or
dV/dt)—you know it’s 3cm/s, and since you
also know the equation for the volume of a
sphere, you can differentiate it (with respect
to time, t) and get the second way of writing
dV/dt. Do that. Can you come up with an
expression for the rate at which the radius of
the balloon changes over time?

10. Assuming that Ohm’s law holds (which it
doesn’t always), the power P of an electrical
circuit is given by P = Ri2, where R is the
resistance of the circuit and i is the current.

(a) If the resistance of the circuit changes
over time, but current remains constant,
how does the power through the circuit
change over time?

(b) If the current through the circuit changes
over time, but the resistance remains con-
stant, how does the power of the circuit
change over time?

(c) If both the current and the resistance
change over time, how does the power
through the circuit change?

(d) If neither the current nor the resistance
change, how does the power through the
circuit change?

Note that in none of these questions do you
know how this stuff changes with time. You
simply know, for example, that i is somehow a
function of time—that if t changes, i changes,
too. (The usual abbreviation for this would be
“i = i(t)”.) You don’t know, for example, that
it changes at three amps per second. You know
that it doesn’t change at zero units per second
(it’s not constant), but that’s all you know.

11. The volume of a cylinder with radius r and
height h is V = πr2h

(a) If the radius changes with time but the
height does not, how does the volume of
the cylinder change with time?

(b) If the height of the cylinder changes with
time but the radius doesn’t, how does the
volume change with time?

(c) If both the radius and the height change
with time, how does the volume change?

(d) If neither the radius nor the height of the
cylinder change, how does the volume of
the cylinder change?

12. The length of the diagonals d in a rectangle of
sides length x and y is given by d =

√
x2 + y2.
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(a) Imagine that one of the two sets of par-
alell sides is changing over time, but the
other set of sides is not. How is the length
of the diagonal changing?

(b) Imagine that all of the sides are changing
over time (but such that the rectangle is
remaining a rectangle). How is the length
of the diagonal changing?

(c) Imagine that none of the sides of the rect-
angle are changing over time. How is the
length of the diagonal changing?

13. The area of a triangle with sides a and b and
an angle θ between them is A = 1

2ab sin(θ).

(a) If a changes with time, but b and θ are
constant w.r.t.3 time, how does the area
of the triangle change with time?

(b) If θ changes with time but a and b remain
constant w.r.t. time, how does the area
change with time?

(c) If both a and b change with time (but θ
doesn’t), how does the area change with
time?

(d) If a, b, and θ all change over time, how
does the area change?

(e) What if none of them change over time?
How does the area change?

14. Each edge of a cube is increasing at a rate of
three miles per second. How fast is the volume
of the cube increasing when the edges are each
12 miles long?

15. A metal disk expands during heating. If its ra-
dius increases at a rate of 0.02 inches per sec-
ond, how fast is the area of one of its sides in-
creasing at the instant the radius is 8.1 inches?

16. How fast is the radius of a soap bubble increas-
ing if air is blown into it at a rate of three cubic
inches per second? Come up with an expres-
sion as a function of time. How fast is the ra-
dius increasing at the instant that the radius
is four inches?

17. You are drinking out of a conical paper cup
(height 10cm, diameter of top 6cm, like the
kind you find next to water dispensers) at a

rate of three cubic centimeters of water per
second. Come up with a function for the rate
at which the water level drops. How fast is the
water level falling when the water is only one
centimeter from the top of the cup?

18. A 747 flying west at 550 miles per hour goes
over the air traffic control tower at the Ithaca-
Tompkins Regional Airport (ITH) at noon. An
hour later, a stealth fighter at the same alti-
tude flies over the tower headed due north at
1000 miles per hour. Come up with a func-
tion for the rate at which the distance between
the airplanes is changing as a function of time.
How fast is the distance between the planes
changing at 2 : 00 PM?

19. A 20-foot ladder is leaning against a building.
If the bottom of the ladder is sliding away from
the building along the ground at one foot per
second, how fast is the top of the ladder falling
when the bottom of the ladder is five feet from
the wall?

20. Sand is pouring out of a pipe at the rate of 16
cubic feet per second. The falling sand forms
a conical pile that makes an angle with the
ground, thanks to research by Sidney Nagel
and others4, of about 30◦. How fast is the
height of the pile increasing at the instant the
pile is four feet high?

21. Let’s go fly a kite! You are flying a kite that
is 90 feet above your hand level. The wind is
blowing it horizontally away from you at 5 feet
per second. How fast are you letting out cord?
How fast are you letting out cord at the in-
stant that the kite is 150 feet away? (Assume
that the cord is straight from your hand to the
kite.)

22. A particle is moving along the line x+ 2y = 2.
Find a) the rate of chang of the y-coordinate,
if the x-coordinate is increasing at a rate of
4 units per second, and b) the rate of change
of the x-coordinate, if the y-coordinate is de-
creasing at a rate of 2 units per second.

23. A rectangle has two sides on the positive x and
y-axes and one corner at a point P that moves

3=“with respect to”
4GRANULAR MATERIAL IS SO COOL: http://en.wikipedia.org/wiki/Angle of repose
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along the curve y = ex in such a way that y in-
creases at a rate of 1/2 units per minute. How
fast is the area of the rectangle changing at the
instant when y = 3?

24. A tank contains 1000 cubic feet of natural gas
at a pressure of 5psi. Find the rate of change
of the volume of gas if the pressure decreases
at a rate of 0.05 psi/hour. (Assume Boyle’s
law: pressure · volume = a constant.

25. The volume of a spherical balloon is increasing
atr a constant rate of 8 cubic feet per minute.
How fast is the radius increasing at the instant
the radius is exactly 10 feet? How fast is the
surface area increasing at that instant?

26. At a certain instant the side of an equilateral
triangle is α centimeters long and increasing at
the rate of k centimeters per minute. How fast
is the area increasing?

27. The perimeter of a rectangle is fixed at 24 cen-
timeters. If the length l of the rectangle is in-
creasing at a rate of 1 centimeter per second,
when (meaning, for what value of l) does the
area of the rectangle start to decrease?

28. A spherical snowball is melting in such a man-
ner that its radius is changing at a constant
rate, decreasing from 16cm to 10cm iin 30 min-
utes. How fast is the volume of the snowball
changging at the instant the radius is 12cm?

29. A man standing three feet from the base of a
lamppost casts a shadow four feet long. If the
man is six feet tall and walks away from the
lamppost at a speed of 400 feet per minute, at
what rate will his shadow lengthen? How fast
is the tip of his shadow moving?

30. An object that weighs 150 pounds on the sur-
face of the earth will weigh 150

(
1 + 1

4000r
)−2

pounds when it is r miles above the surface.
Given that the altitude of the object is increas-
ing at the rate of 10 miles per second, how fast
is the weight decreasing at the instant it is 400
miles above the surface?

31. According to special relativity, the mass of a
particle moving at velocity v is

mr√
1− v2/c2

where mr is the mass at rest and c is the speed
of light. At what rate is the mass changing
when the particle’s velocity is 0.5c and the rate
of change of the velocity is 0.01c per second?

32. Water is dripping through the bottom of a con-
ical cup four inches across and six inches deep.
Given that the cup loses half a cubic inch of
water per minute, how fast is the water level
dropping when the water is three inches deep?

33. A revolving searchlight a half-mile from shore
makes one revolution per minute. How fast
is the light travelling along a straight beach
at the instant it passes over a shorepoint one
mile away from the shorepoint nearest to the
searchlight?

34. A searchlight is trained on a plane that flies
directly above the light at an altitude of two
miles and a speed of 400 miles per hour. How
fast must the light be turning 2 seconds after
the plane passes directly overhead?

35. When the shadow of the sash appeared on
the curtains it was between seven and eight
oclock and then I was in time again, hearing
the watch. It was Grandfather’s and when
Father gave it to me he said I give you the
mausoleum of all hope and desire; it’s rather
excruciating-ly apt that you will use it to gain
the reducto absurdum of all human experience
which can fit your individual needs no better
than it fitted his or his father’s. I give it to you
not that you may remember time but that you
might forget it now and then for a moment and
not spend all your breath trying to conquer it.
Because no battle is ever won he said. They
are not even fought. The field only reveals to
man his own folly and despair, and victory is
an illusion of philosophers and fools.

—William Faulkner, The Sound and the Fury

The minute hand on a clock is five inches long,
and the hour hand is four inches long. How fast
is the distance between the tips of the hands
changing at 3:00?
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